
www.manaraa.com

International Conference on Computer Systems and Technologies - CompSysTech’11

End-User Programming

of Web-Native Interactive Applications
(Keynote Paper)

Mehdi Jazayeri, Navid Ahmadi

Faculty of Informatics
University of Lugano
Lugano, Switzerland

Abstract: Web 2.0 has enabled Web users to create and share a variety of hyper-text based artifacts

including embedded images, sound, and video on the Web. Creating Web-based interactive artifacts such as
computer games, however, has remained a challenge: to end users due to the lack of end user programming
tools; and to programmers due to the poor interactivity performance of the Web. With the emergence of
HTML5 and improving performance of JavaScript engines, professional Web programmers have only just
begun to develop Web-native interactive artifacts. Today's standard Web technologies make the Web a
hospitable platform for efficient interactive applications both for professional programmers and end-users.
With proper support, in tools and languages, end-user programming of interactive applications is feasible. In
this paper, we review the current state of Web application development and the possibilities and potential
benefits of end-user programming on the Web. We will use a case study, AgentWeb, a Web-based end-user
development environment, as a representative of interactive Web applications. It is based completely on
open Web technologies, rather than on any proprietary technologies. Given that 2D graphic interactive
applications may be developed and efficiently executed on the Web, we discuss some of the potential
applications in educational settings, including individual and collaborative learning.

Key words: World Wide Web, HTML5, end-user programming, Web applications, Web programming,
open Web, Web native applications

INTRODUCTION
The original view of the World Wide Web (W3) was to be “a pool of human

knowledge, which would allow collaborators in remote sites to share their ideas and all
aspects of a common project.” [1] It was introduced in the early 1990s with the goal of
making it possible to access information from any source in a consistent and simple way.
Developed at CERN, in Geneva, Switzerland, it was aimed originally at physicists and
other scientists that generate huge amounts of data and documents and need to share
them with other scientists.

A number of basic technologies were developed to help implement these ideas. The
HTML language was invented and adopted as a simple way to both describe the format of
documents and to refer (link) to other documents. The HTTP protocol was designed to
allow one computer—the client computer—to request data and documents from another
computer—the server computer—so that it could make that document available to the
users on the client computer. In this way, the World Wide Web was viewed as a vast
repository of information that provided access to a large number of users. The original
definition of W3 also provided the concept of a uniform resource identifier (URI) that could
be used to identify uniquely each entity that is accessible on the Web. These entities could
point to each other using the concept of link supported by HTML. This view of the Web
was quite static, with producers of information creating pages and consumers of the
information clicking on links to view the information.

With the introduction of the Internet to the commercial world in 1995, businesses and
the general public started using the WWW and the static nature of the information

www.manaraa.com

International Conference on Computer Systems and Technologies - CompSysTech’11

structure on the Web was no longer sufficient: businesses wanted their customers to be
able to communicate back with them. They wanted the customers to be able to place
orders for products and not only read their product catalogues. Fashion designers wanted
their customers to be able to design or customize dresses by combining several pieces of
clothing. Furniture stores wanted their customers to be able to virtually decorate a room
with pieces of furniture. In general, there was a need for ordinary users of the Web to
contribute information to this “pool of human knowledge.” The so-called Web 2.0
incarnation of the Web was characterized, indeed, by increasing “user participation.” [2]
There was a wave of applications that allowed users to contribute and share ideas and
opinions (blog posts), photos (e.g. Flickr), music (e.g. Last.fm), and video (e.g. YouTube)
content, and comment on existing content (e.g. most newspapers). The Web became
increasingly multi-media, and users were enabled to contribute content to it. Yet, user
involvement remained static in that users could only add static entities, such as text, photo,
or video.

The initial design of Web technologies which was based on a “Web of documents”
perspective, did not accommodate the requirements to execute interactive applications in
the Web browser. The Web browser was expected to only interpret the HTML commands
of the page and display the results on the client computer. Therefore, developers had to
produce interactive Web applications using so-called rich Internet applications (RIAs).
Such applications have become ubiquitous on the Web and exhibit both high performance
and high interactivity [4]. RIAs are written by programmers, often using proprietary tools
and languages. Nevertheless, the growth of user participation and the shift of Web pages
to Web applications required native support for developing Web applications, which led to
the development of HTML5 standard. The advent of HTML5 makes it even easier to
develop Web applications that offer sophisticated user interfaces and run on nearly all
browsers. HTML5 adds a number of particularly interesting features for high-performing
interactive applications [9]:

• Canvas: A new tag “canvas” enables page developers to create animated graphics
in HTML without needing a plug-in. This will make graphics both perform better and
be more portable across browsers.

• Support for video/audio: audio and video will also be natively embedded in the Web
page allowing browsers to play them without needing a plug-in. browsers will be
(and are increasingly even now) shipped with co-decs that will be able to decode
audio and video files for playing.

• Native support for drag and drop: HTML5 will support native drag and drop, so that
objects may be dragged from one window and dropped into the Web page.
Currently, this is done with specialized libraries.

This paper deals with removing the static restriction of artifacts and enabling Web
users to create and contribute interactive artifacts to the Web. This is not possible using
RIAs because they are proprietary environments designed for professionals. But now that
HTML5 is emerging, open Web environments can support non-programmer Web users in
developing interactive applications.

Interactive artifacts are, in fact, as software people know, nothing but programs. So, if
users of the Web could program, they could also add interactive content to the Web. But
most users are not programmers. How can we enable them to program on the Web? We
can certainly rely on a long history of research in end-user programming on traditional
computing platforms [5,6]. Fortunately, the Web offers an even better platform for end-user
programming for two reasons. First, there are many potential users. Second, the success
of Web 2.0 has shown that many users are ready to participate in the development of
artifacts. We assume that at least a reasonable percentage of these users will be
interested in learning how to program if it does not require years of technical study. In this
paper, we show that by combining some of the lessons learned from end-user

www.manaraa.com

International Conference on Computer Systems and Technologies - CompSysTech’11

programming research and appropriate use of current Web technologies we can enable
end-user programming on the Web. We rely on a case study of a computer game design
environment as an example.

AGENTWEB: A COMPUTER GAME DESIGN ENVIRONMENT
AgentWeb is a Web-based computer game design environment targeted for non-

programmers. It is written completely in open Web technologies with no reliance on
proprietary software or applications. That is, it is written in JavaScript, HTML, and CSS,
which are all industry standards, and available in all Web browsers. It uses a few open
technologies for its user-interface implementation, namely, canvas for 2D graphics and
Dojo toolkit for supporting drag-and-drop operations. These standard technologies are
sufficient to give AgentWeb the familiar look and feel of desktop applications.

The reader may want to try AgentWeb at http://agentweb.inf.usi.ch/. It offers a visual
game development environment in which users can design and program games. The
programming model for games is agent-based, rule-based, and visual. For a user to create
a game, they have to create agents and program the behavior of agents by writing rules
for the agents to follow. Rather than introducing a new interface to the users, AgentWeb’s
user-interface reproduces that of AgentSheets [7,8], which runs on a desktop.
AgentSheets has a rule-based, visual language and has been shown to be convenient for
novices and end-users. Indeed, AgentSheets has been deployed successfully in education
all the way from elementary schools through university classes. Users find its interface
easy to learn and use. Therefore, the goal of AgentWeb is to demonstrate that
AgentSheets-like applications can be hosted entirely and natively on the Web.

AgentWeb offers the user a development environment (IDE) with panes for different
activities:

• Agent Gallery lets users create agents and icons to represent them.
• Image Editor lets users draw customized icons for the agents.
• Programming Environment lets users program the agents using a visual, rule-based

programming language.
• Scene Editor, known as worksheet in the IDE, lets users create the game scene by

instantiating the agents and executing them. The worksheet is organized as a
rectangular grid of cells. Each cell contains zero or more agent instances.

Figure 1 shows the IDE of AgentWeb being used to create a version of the familiar
Frogger game. As the IDE shows, it is a highly graphical, interactive, environment. It offers
familiar and friendly features such as drag-and-drop for the convenience of the user.

Once a game scene has been created, the user can start (i.e. execute) the game. In
the case of the Frogger game, this means that the user (player) can try to move a frog
from one side to the other trying to avoid the oncoming traffic and also from falling into the
river.

Our experiments have shown that users, such as middle school students, find
AgentWeb easy to learn and use. In general, they take the same amount of time to create
a game with AgentWeb as they do with AgentSheets. The execution speed of the game is
also acceptable from the users’ point of view. We have measured the performance of the
games in various browsers. While there are variations in the performance of different
browsers, they are all getting increasingly faster and we observe less and less difference
between the execution speed of AgentWeb and its desktop counterpart.

www.manaraa.com

International Conference on Computer Systems and Technologies - CompSysTech’11

Figure 1. The IDE of AgentWeb with a Frogger game being designed in the Web browser.

AGENTWEB: IMPLEMENTATION
AgentWeb’s design and implementation are, of course, completely different from

those of AgentSheets because it runs on the Web and in a browser. Perhaps surprisingly,
its good performance is not due to its use of proprietary software. It is written completely
with Web native technologies, primarily in JavaScript. Its most interesting feature is that it
automatically translates the visual rules created for agents by the user into JavaScript
code. So, when a game is executing, it is native JavaScript that is running. As JavaScript
engines and browser implementations have improved, they impose increasingly less
overhead on the execution of AgentWeb and therefore we observe better performance.

The primary reason for the high performance of AgentWeb is that both its IDE and
the execution environment run entirely in the browser with no communication back to the
server (once the environment is downloaded to the browser).

The user interface of AgentWeb has been built using CSS, HTML and Dojo Toolkit.
Dojo provides layout management and drag-and-drop libraries out-of-the-box, which fits
the requirements for building an IDE. Such open-source toolkits facilitate the programming
of friendly Web applications.

The IDE panes, e.g., visual programming environment, have been built following a
model-view-controller (MVC) architecture [10], which separates model (Web-native
executable game) from the view (the game being designed by the user) and connect them
through the controller (compiler and runtime system). Such architecture, when deployed
completely on the client-side, turns the IDE to a direct-manipulation environment that
updates the running game instantly according to the modifications that the user makes in
the IDE.

PERFORMANCE OF WEB-NATIVE WEB APPLICATIONS
Since the Web was not designed for running interactive applications, a natural

question is whether Web-native applications can meet the performance requirements of
interactive applications. We explored this issue by developing ‘RistrettoMobile’, a compiler

www.manaraa.com

International Conference on Computer Systems and Technologies - CompSysTech’11

and execution engine for transforming interactive applications built in AgentSheets to Web-
native applications running on JavaScript and HTML5 Canvas [11]. As mentioned earlier,
AgentSheets is an authoring tool used by school children, to build games and science
simulations. By optimizing the execution and rendering engines, we were able to reach
execution speeds high enough for running interactive games in the browser. For instance,
Figure 2 shows a simulation of E. coli bacteria [12], an instance of CPU- and graphic-
intensive application, running more than 2000 agents at 35 fps (frames per second) on a
personal computer’s Web browser. Thirty fps is considered adequate for interactive
response of such applications.

Figure 2. Simulation of E. coli bacteria as a Web-native interactive application.

More than 2000 agents run at 35fps in the Web browser.

CONCLUSIONS AND FUTURE WORK
We have observed that the current open Web standards are sufficient to support

sophisticated end-user programming of graphical interactive applications. This is an
exciting opportunity because it indicates that the power of user participation demonstrated
by the success of Web 2.0 can be harnessed to enable the collaborative development of
applications and simulations of interest to diverse groups of Web users. The number of
users of the Web is huge and rising ever rapidly. Their interests are also wide and varied.
Commercial software producers cannot satisfy the interests of all users. Web-enabled end-
user programming tools can fill this vacuum.

End-user programming and simulation have been applied with success in educational
environments both to engage students at early stages and to help non-computer
specialists to apply computing to areas of their specialty such as in social or physical
sciences. By bringing end-user programming to the Web, these and other applications can
be explored by a vast number of people. We have shown only one paradigm for end-user
programming, that of agent-oriented, rule-based, visual programming. More work is

www.manaraa.com

International Conference on Computer Systems and Technologies - CompSysTech’11

needed to explore other paradigms and different domains of application. The current Web
and browser technologies are up to the challenge.

The use of open standard Web technologies means that the developed tools are
portable across platforms, existing ones and those yet to come. This is particularly
beneficial for running interactive applications on mobile devices, which are highly diverse
in hardware and execution platforms. For example, browsers that run on new tablet and
other mobile devices can run such applications without modification. It is likely that such
devices, rather than traditional computers, will become the dominant access points to the
Web. Using open Web technologies to build Web native applications can ensure that users
of such devices will enjoy the benefits of the new class of interactive applications.

REFERENCES
[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, A. Secret. The World-Wide

Web. Comm. ACM 37(8): 76–82, August 1994.
[2] T. O’Reilly. What is Web 2.0 - design patterns and business models for the next

generation of software. 2005.
[3] M. Jazayeri. Some trends in web application development. 2007 Future of

Software Engineering (FOSE ’07), pages 199–213, 2007, held at International Conference
on Software Engineering (ICSE 2007).

[4] P. Fraternali. Tools and approaches for developing data- intensive web
applications: a survey. ACM Computing Surveys, 31(3):227–263, 1999.

[5] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C. Wallace, End-
user software engineering with assertions in the spreadsheet paradigm. Proc. ICSE,
2003:93-103.

[6] C. Kelleher and R. Pausch. Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers. ACM Computing
Surveys, 37(2):83–137, 2005.

[7] A. Repenning, AgentSheets: an interactive simulation environment with end-user
programmable agents, Interaction, 2000.

[8] A. Repenning, A. Ioannidou, J. Zola, AgentSheets: End-User Programmable
Simulations. J. Artificial Societies and Social Simulation 3(3): (2000)

[9] B. Johnson, The Web is reborn. Technology Review, November/December,
2010:46-53.

[10] T. Reenskaug, “Models - views - controllers,” Technical note, Xerox PARC, 1979.
[11] N. Ahmadi, A. Repenning, and A. Ioannidou, “Collaborative end-user

development on handheld devices,” IEEE Symposium on Visual Languages and Human-
Centric Computing(VL/HCC), pp. 237-241, 2008.

[12] D. Klaus. Microgravity and its implications for fermentation biotechnology. Trends
in Biotechnology, 16(9):369–373, 1998.

ABOUT THE AUTHORS

Mehdi Jazayeri is professor of informatics in the Faculty of Informatics at the

University of Lugano. He was the founding dean of the faculty which started in October
2004. Before that he was at the Technical University of Vienna as professor and head of
the Distributed Systems Group. He is a Fellow of the IEEE.

Navid Ahmadi is a PhD candidate in the Faculty of Informatics at the University of

Lugano. He has been researching end-user programming on the Web. He is the developer
of AgentWeb, a Web-based game design environment for end users, built using open Web
technologies.

